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A REVIEW OF CORRELATION AND 

REGRESSION

We begin by going back to the basics of the regression model in this chapter. Our goal is 

to build up the components of the standard multiple regression model step-by-step first, 

before introducing major variations of that model in the chapters ahead.

To introduce this model, we unpeel the layers of the regression framework to get down 

to essential core concepts that must be understood first, such as widely used but often 

undefined terms like “association,” “independence,” “controlling for,” and “effect.” In doing 

this, we also take positions on some of the foundational assumptions of the regression 

framework.

If this chapter is purely review, it could be skipped. But we encourage readers to start here, 

if only to see how we discuss these starting points.

1.1 ASSOCIATION IN A BIVARIATE TABLE
This section asks an important question: What does it mean to say that variables are 
“related,” or associated? To investigate these terms, we look at an example from a study by 
Radelet (1981), assessing which individuals convicted of murder received the death penalty 
in Florida in 1976–1977. This is a widely used example, because it is in part so clear, and in 
part also sobering.

To look at the possibility of an association between the race of the victim and the likelihood of 
a death penalty verdict, we produce a cross-tabulation of these variables. This cross-tabulation 
shows the joint values of two variables: whether the victim was Black or White (variable 
name victim) and whether the death penalty (variable name penalty) was given in each case.  
We consider the race of the victim an independent variable, possibly influencing the likelihood 
of the death penalty—the dependent variable in this example. Notice that the column variable 
in the Table 1.1 is the independent variable (race of the victim), and the row variable is the 
dependent variable (death penalty or not).
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2    Generalizing the Regression Model

Here are the frequencies for this two-way table:

TABLE 1.1   � A CROSS-TABULATION OF THE RACE OF THE VICTIM AND THE USE  
OF THE DEATH PENALTY IN 326 HOMICIDE CASES

There are 326 cases considered in this table. The table shows the marginal frequencies for the 
race of the victim (bottom row) and the marginal frequencies for the death penalty (right-hand 
column) overall. These are the same as the one-way frequencies. The cell frequencies show the 
number of cases for each possible joint value of the two variables.

Of course, all we have here are the raw frequencies. We need to make the pattern of frequencies 
more interpretable—to show whether there is a relationship between the two variables and what 
kind of relationship it is.

Table 1.1 is also hard to interpret in this form, mainly because the row and column marginal totals 
differ from each other. We want to see whether the tendency to receive the death penalty was related 
to the race of the victim. The most straightforward way to see this is to calculate the percentages in 
each category of the independent variable—that is, the percentages in each column. If those per-
centages are the same, there is no association. If they vary, there is some association.

Here is the same table with the column percentages shown:

Victim

TotalBlack White

Penalty
          no Frequency 106 184 290
        yes Frequency 6 30 36

Total Frequency 112 214 326

TABLE 1.2   � DEATH PENALTY OUTCOME BY RACE OF THE VICTIM,  
WITH PERCENTAGES

Victim

TotalBlack White

Penalty
          no Frequency 106 184 290

Col Pct 94.64 85.98

        yes Frequency 6 30 36
Col Pct 5.36 14.02

Total Frequency 112 214 326
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Chapter 1  ■  A Review of Correlation and Regression    3

It is now easy to see that there is a greater tendency to receive the death penalty when the victim 
is White, compared to cases when the victim is Black. It looks like the race of the victim may be 
associated with the chances of the death penalty. We can interpret the table this way: If the victim 
is Black, only about 5% of convicted murderers receive the death penalty, but when the victim is 
White, the percentage who receive the death penalty increases to about 14%.

We can refer back to probability theory to state exactly what is meant by “independence” versus 
“association.” A relationship means that there is some form of association, or dependence, between 
the two variables. In probability theory terms, this means that the probability of Y changes with 
the categories of X. In this specific example, this means that the probability of the death penalty 
changes with the race of the victim. Notice that this probability is in fact shown in Table 1.2, 
since it is just the proportion in each category of victim race that receive the death penalty. So, the 
probability of the death penalty in cases where the victim is Black is .0536, and the probability of 
the death penalty in cases where the victim is White is .1402.

1.1.1 Probability Rules for Defining Independence

A formal definition of independence of variables allows us to detect departures from independence.  
If two “events” X and Y are independent, this means

=Pr PrY X Y( / ) ( )

In words, the probability of Y, given a level of X Pr Y X( ( / )), is the same as the probability of Y overall. 
It would help to translate this statement into the world of variables: The probability of a given specific 
category of Y occurring, given a specific category of X, is the same as the overall (marginal) probability 
of Y. In other words, knowing the category of X tells us nothing about the probability of Y.

Notice in Table 1.2 the overall probability of the death penalty can be found from the marginal fre-
quency in that row divided by the total number of cases—that is, 36 / 326 = .11. But the probabilities 
across the two categories of victim race vary around this overall probability quite a bit (.05 to .14).

Under the assumption of independence, the probability of any combination of X and Y values is

= ⋅Pr Pr PrX Y X Y( and ) ( ) ( )i j i j

In words, the probability of the joint occurrence of a particular value of X and a particular value 
of Y is equal to the overall probability of the ith value of X times the overall probability of the jth 
value of Y. What this rule says, in more specific terms, is this: If X and Y are independent, then 
the probability of any joint value of X and Y can be inferred from the overall probabilities of each. 
The probability rule above says that we can find the specific probability of any combined values 
of Xi and Yj – if independent – by taking successive proportions: The proportion of people with 
the value Yj as a proportion of the people with the value Xi.

But, if Y depends on X, we know that the probability of specific categories of Y will differ across 
categories of X. From the definition of conditional probability

=Pr
Pr

Pr
Y X

X Y
X

( / )
( and )

( )
,j i

i j

i

we can derive Pr(Xi  and Y j ) = Pr(Xi ) ◊Pr(Y j /Xi )
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4    Generalizing the Regression Model

If this is the case, then, using the rule for independent probabilities will result in observed prob-
abilities in the table that depart from the actual probabilities. The more that observed probabili-
ties depart from probabilities expected under the assumption of independence, the greater the 
evidence of an association, or in other words, a dependence between the variables.

In Table 1.2, we can use the marginal frequencies from the table to find the overall probabilities 
of each category of X and Y:

Pr (Death Penalty = No) = 290 / 326 = .89
Pr (Death Penalty = Yes) = 36 / 326 = .11
Pr (Victim = Black) = 112 / 326 = .34
Pr (Victim = White) = 214 / 326 = .66

So, for example, if the race of the victim and the likelihood of the death penalty are independent, 
then the probability of the death penalty when the victim is Black would be the following:

Pr(X1) ◊Pr(Y2 ) = .34 ¥ .11 = .037  

However, the actual probability of the death penalty given a Black victim is

= =Pr X Y( and ) 6 / 326 .0181 2

The actual probability is one half the probability implied by independence.

As another example: under the assumption of independence, the probability of the death penalty 
given a White victim is:

Pr(X 2 ) ◊ Pr(Y2 ) = .66 ◊ .11 = .073
Pr(X 2  and Y2 ) = 30 / 326 = .092

However the actual probability is:
⋅ = ⋅ =

= =
Pr Pr
Pr

X Y
X Y

( ) ( ) .66 .11 .073
( and ) 30 / 326 .092

2 2

2 2

which is somewhat higher.

If we set up a definition of what is implied by independence in every cell in the table, we could 
test the overall departure from independence to assess the existence of an association between 
variables. Of course, this only begins to define the many characteristics implied by the term 
association: There are also considerations of direction, strength, and form of the association—all 
issues we will eventually deal with.

We have seen how association is defined in tables, for nominal or ordinal categorized variables. 
Next we look at the association between variables that are interval or ratio level.

1.2 CORRELATION AS A MEASURE  
OF ASSOCIATION
We will use data from the United States to investigate the relationship between the mobility rate 
and the divorce rate in nine geographical regions. Assume that the divorce rate is measured as 
the number of persons per 1000 population getting a divorce or annulment. The mobility rate is  
the percentage of people living in a different house than five years earlier. This example is 
restricted to an N of 9 observations (for 9 regions), so that we can more easily see how the 
association works.
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Chapter 1  ■  A Review of Correlation and Regression    5

The data are shown in Table 1.3.

Assume you are interested in the amount of association between these two variables. To see visu-
ally the possibility of an association, construct a scatterplot showing the joint data points for all 
nine regions on values of mobility and divorce (see Figure 1.1).

The scatterplot shows the two variables are definitely “associated,” or to use a synonymous term, 
related. Higher mobility rates are associated with higher divorce rates, on average. We say “on 
average” because there will always be exceptions, deviations from this tendency. But the issue here 
is to capture the pattern, not each exception.

The question is, how closely related are the mobility rate and the divorce rate? Is there a way to 
state the level of association on a common scale so that it can be compared across different pairs 
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FIGURE 1.1   � SCATTERPLOT OF THE MOBILITY RATE AND DIVORCE RATE IN NINE REGIONS OF THE 
UNITED STATES

TABLE 1.3   � MOBILITY AND DIVORCE RATES FOR NINE REGIONS OF THE  UNITED STATES, 1960

Region Mobility Rate Divorce Rate

New England 41 4.0

Middle Atlantic 37 3.4

E. North Central 44 5.1

W. North Central 46 4.6

South Atlantic 47 5.6

East South Central 44 6.0

West South Central 50 6.5

Mountain 57 7.6

Pacific 56 5.9
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6    Generalizing the Regression Model

of variables or situations? How can we develop a measure of association for these data that is 
sensitive to the direction and strength of the association, assuming linearity? (Note: We need to 
assume something about form of the association at the outset.)

1.2.1 Developing a Measure of Association for Interval/Ratio Data

We have added the mean of X and Y to the scatterplot, thus dividing the plot into  
quadrants. From the data, we calculate that

	 =X 46.89 	  =Y 5.41

	 =s 6.56X 	 =s 1.29Y

	
=s 43.111X

2

	
=s 1.674Y

2

This shows the mean (X ,Y ), the standard deviation (sX , sY ), and the variance (sX
2 , sY

2 ) of X and 
Y in the scatterplot. Notice almost all of the points fall in the lower left and upper right quadrants 
of the scatterplot.

1.2.1.1 Developing a Measure
Version 1. The Sum of the Cross-Products

Use deviation scores on X and Y, so that both are positive points in the upper right quadrant, 
both are negative for points in lower left quadrant (with combined signs either +/+ or -/-), and 
the combined signs would be (+/ -) and (- /+) in the upper left and lower right quadrants. Using 
that information, you can sum these individual deviations from the mean, as in

∑ − ⋅ −
=

X X Y Y( ) ( )i i
i

N

1

This is called the sum of the cross-products. The summation operator here (∑) denotes summing 
across all units (i) in a sample, from 1 to N. Unless applied differently, we will drop this notation 
to simplify the presentation.

This measure is more positive the more points that fall in lower left and upper right quadrants 
(each with positive cross-products) compared to the upper left and lower right quadrants (each 
with negative cross-products). Thus, this measure is also more negative the more points in upper 
left and lower right quadrants relative to the other two. If points occur equally in all quadrants, 
they will cancel out when summed, since half will be positive and half will be negative. Thus, this 
measure is sensitive to the direction and strength of the association.

But there is a problem: The sum depends on sample size. You can increase its size just by increas-
ing the size of the sample. This leads to the next necessary component of a useful measure of 
association: the covariance.

Version 2. The Covariance

Divide the sum of the cross-products by N – 1 to get

∑ − ⋅ −
−

X X Y Y
N

( ) ( )
1

i i  = the covariance, a very important associational statistic.

The covariance is like the average amount of association per individual. (Note: N –1 is used to 
take into account that there are N – 1 degrees of freedom, since the last observation on X and 
Y can be deduced from the other N – 1 observations, because the sum of deviations around the 
mean is by definition zero.)
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Chapter 1  ■  A Review of Correlation and Regression    7

There is still a problem, however: X and Y have very different size units. The sum will change 
depending on the size of the units of each variable. If you multiply each divorce score by 10,  
the sum will change accordingly. This is fine if one wants the association to reflect the units of  
the variables, but if one wants the association to reflect how relative differences on one variable 
are related to the same relative differences on the other, or in other words, if one wants to judge the 
strength of the association, the two variables must be in the same units. This leads us to the final 
component defining the correlation.

Version 3. The Correlation

The correlation “equalizes” the units of the two variables by dividing each variable’s deviation 
score by the size of its standard deviation. This puts the two variables in a standardized metric, 
equal to a Z score on each variable:

rxy =

∑ (Xi−X )
sx

⋅
(Yi−Y )

s y

⎛

⎝
⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟

N −1
=  ∑

Zx ⋅Z y

N −1

In this version—the actual correlation—deviations on X and Y are measured relative to the stan-
dard deviation of each, thus removing differences in the size of the units. Scores on both variables 
are Z scores: They stand for the number of standard deviations above or below the mean a given 
X or Y score is.

Theoretically, this value varies between -1 (a perfect negative correlation) to +1 (a perfect posi-
tive correlation), with 0 standing for no correlation—in other words, no association. In the latter 
situation, you would see equally scattered points in all quadrants of the plot. As you can see in 
the plot, the correlation here is very high.

The formula for the correlation is often stated in an equivalent form. If you rearrange the formula 
above, by inverting the divisor and multiplying, you get

rxy = ∑ (Xi - X )(Yi -Y )
sx ⋅ s y

⋅
1

N -1

⎛

⎝
⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
= ∑ (Xi - X )(Yi -Y )

N -1
⋅

1
sx ⋅ s y

⎛

⎝
⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟

= ∑

(Xi - X )(Yi -Y )
N -1
sx ⋅ s y

=
sxy
sx ⋅ s y

Note the shorthand notation used for the covariance in the numerator: sxy. When the correlation 
between mobility and the divorce rate is calculated, it is .854. (You should be able to calculate the 
sum of the cross-products here as 58.10.)

1.2.2 Factors Affecting the Size of r

1.	 The more dissimilar the distributions of X and Y and/or the more skewed their 
distributions, the lower the possible value of r.

2.	 Unreliability—random error components—in the measurement of X or Y, so that observed 
scores imperfectly reflect true X or Y values, will introduce noise into r and lower it.

3.	 When the range of values on X or Y is restricted, r will be lower (because larger 
deviations have a larger influence on the numerator than denominator of r). This is 
usually the result of problems in sampling: An incomplete sampling frame, a restricted 
population, or sample selection bias.
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8    Generalizing the Regression Model

4.	 Outliers, or unusual values of X and Y, will have a major influence on r.

5.	 Curvilinear relationships will be underestimated by r, unless X and/or Y are 
transformed to reflect the nonlinearity.

1.3 BIVARIATE REGRESSION THEORY
While the correlation is a symmetric measure of overall linear association between X and Y, the 
regression coefficient is an asymmetric measure of the effect of X on Y—that is, how much of a 
change in Y results from a given change in X. There is a very important change in language that 
signals a change in intentions: Here we talk about X having an effect on Y.

Some believe this language is not appropriate because it seems to say there is a causal connection: 
X causally precedes Y. In our approach, we emphasize the fact that the regression model is inher-
ently an asymmetric model and use the term “effect” to signify a causal claim, not causal proof. 
We believe this language is most consistent with the structure of the model and its intentions. 
Here, association is not enough because it implies simply a relationship, without regard to the 
direction of causation.

Consider again the scatterplot in Figure 1.1 for the relationship between the mobility rate (X ) 
and the divorce rate (Y ). The question now is, what is the line drawn through these points that 
maximizes our ability to predict Y from X ? That is, how much do we know about the regional 
rate of divorce (Y ) as a result of knowing the mobility rate (X )?

1.3.1 The Regression Model

The bivariate regression model expresses each observation’s score on Y as a function of a combina-
tion of components:

Yi = a + bXi + ei

Dependent
Variable

Intercept Regression
Coef f icient

Independent
Variable

Error in
Predicting Y

The equation says the individual score on Y is composed of:

•	 A constant a, called the intercept, defined as the point where the regression line crosses 
the Y axis and thus the predicted value of Y when X = 0

•• The observation’s score on X times b, the regression coefficient, defined as the number 
of units of change in Y resulting from a one unit increase in X

•• An error term ( ei ), reflecting the degree to which scores of Y are not predicted by X.

For any case, the predicted value of Y, Y , is: = +Y a bXi i  
and the prediction error is:	 − =Y Y ei i i

In other words, this is the distance on Y from the predicted point on the regression line to the 
actual Yi  score at a given level of X. Y  is the predicted score for anyone with the same X value.
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Chapter 1  ■  A Review of Correlation and Regression    9

1.3.2 The Least Squares Criterion

Perhaps the most important element of the regression framework is the development of a crite-
rion telling us where to draw the line showing how we can maximize the prediction of Y from X 
and thereby minimize error in prediction. Again we develop this concept in stages (using a classic 
example in Wonnacott and Wonnacott, 1979):

Version 1. Minimize ∑ − Y Y( )i i

Problem: + and - errors cancel out; so this doesn’t work as a criterion. Note below that this sum 
is zero in both cases, but line B is a worse fit to the “sense” in the scatter of points.

Line A

+2

–1

–1

Line B

+1

–3
+2

Version 2. Minimize ∑ − Y Yi i  (the absolute value of the error)

•

•

•

Line A

+2

–1

–1
•

•

•

Line C

+3

Note here that Line C is a better fit by this criterion but a less reasonable line because it ignores 
one data point while maximizing the fit of the other two.

Version 3. Minimize ∑ − Y Y( )i i
2 (The Least Squares Criterion) 

This is called the “sum of squared errors,” or “sum of squares error.” Note that it solves the cancel-
ing problem with Version 1 and takes all data into account by definition, unlike Version 2.

1.3.2.1 Deriving the Value of b That Minimizes the Sum of Squares Error
We want to find a value of b that results in the least error in the prediction of Y. This is a compli-
cated problem, but it can be derived mathematically.

Begin with the fitted model: = +Y a bXi i

First, we need to express the intercept, a, in terms of the other components of the model. This 
will show us that the intercept depends on b, as well the means of X and Y.
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10    Generalizing the Regression Model

First, from the complete regression model:

      = + +Y a bX ei i i

Divide by N:
 

= + +
Y
N

a
N

bX
N

e
N

i i i

Sum:
  

∑
= ∑ +

∑
+

∑Y
N

a
N

b X
N

e
N

i i i

The sum of error is zero, by assumption, the sum of constants is N times the constant, and the 
sum of a constant times a variable is the constant times the sum of the variable, so . . . 

= ⋅ +

= +

= −

Y
N a

N
bX

Y a bX

a Y bX

This shows the intercept is the mean of Y minus b times the mean of X. It is also the bivariate 
formula for the intercept.

Now substitute for a in the prediction equation:

= − +Y Y bX bX( )i i

Collecting terms:	 = + −Y Y b X X( )i i

Now expand the least squares criterion, substituting for Yi  with the preceding equation:

)(∑ − = ∑ − + −

= ∑ − − −

Y Y Y Y b X X

Y Y b X X

( ( ( )))

(( ) ( ))

i i i

i i

2 2

2

We can expand this expression using the rule for expansion of a difference squared: 

− = − +a b a ab b( ) 22 2 2 , applied to the equation above turns into

(a       –          b)2       =            a2      – (2        a       ∙      b)       +      b2

∑ − − − = ∑ − − − ⋅ − + −

= ∑ − − ∑ − ⋅ − + ∑ −

Y Y b X X Y Y b X X Y Y b X X

Y Y b X X Y Y b X X

(( ) ( )) (( ) 2 ( ) ( ) ( ) )

( ) 2 ( ) ( ) ( )
i i i i i i

i i i i

2 2 2 2

2 2 2

This can be arranged to show it is a quadratic function of the form + +a bx cx 2, but you have to 
read the equation realizing that the b are the variables in the equation above, and the constants a, 
b, and c from the quadratic formula are given constants involving the sum of squared deviations 
in Y ( ∑ −Y Y( )i

2 = a), twice the sum of the cross-products ( ∑ − ⋅ −X X Y Y2 ( ) ( )i i = b), and the 
sum of squared deviations in X ∑ − =X X c( ( ) )i

2 .
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Chapter 1  ■  A Review of Correlation and Regression    11

Using this, we rearrange the right-hand side of the equation as follows:

)(∑ − = ∑ − − ∑ − ⋅ − ⋅ + ∑ − ⋅Y Y Y Y X X Y Y b X X b( ) 2 ( ) ( ) ( )i i i i i

2 2 2 2

Figure 1.2 shows values of this function as we change values of b. To find the formula that always 
ensures minimizing the error in predicting Y, we find the first derivative, representing the rate of 
change in Y resulting from the smallest possible change in b on the right side of the equation. 
This rate of change is the slope of the tangent to the curve at each value of b. We want to take 
as our value of b the value that produces the minimum value of this function. That minimum is 
ensured if we choose the value that produces a first derivative of 0.

The derivative is (using rules discussed in a later chapter)

= − ∑ − ⋅ − + ∑ − ⋅
d f
d b

X X Y Y X X b
( )
( )

0 2 ( ) ( ) 2 ( )i i i
2

As noted above, we want to evaluate this expression when the derivative, the slope of the function, 
is zero. When we do this and solve for b, we derive this expression:

− ∑ − ⋅ − + ∑ − ⋅ =

∑ − ⋅ = ∑ − ⋅ −

=
∑ − ⋅ −

∑ −
=

∑ − ⋅ −
∑ −

X X Y Y X X b

X X b X X Y Y

b
X X Y Y

X X
X X Y Y

X X

2 ( ) ( ) 2 ( ) 0

2 ( ) 2 ( ) ( )

2 ( ) ( )
2 ( )

( ) ( )
( )

i i i

i i i

i i

i

i i

i

2

2

2 2

This is in fact the formula for the bivariate regression coefficient b.

This can written shorthand as = =b
s
s

X Y
X

cov( , )
var( )

xy

x
2

which is produced by dividing both the numerator and denominator of the derived least squares 
formula by N – 1. This formula shows that changes in Y associated with changes in X (the 
numerator) are measured in terms of the size of units of X (captured by the variance of X).

FIGURE 1.2    THE FIRST DERIVATIVE AS A FUNCTION OF VALUES OF b

Slope = 0 

b 

f
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12    Generalizing the Regression Model

You can compare this formula to the previous formula for the correlation. It is very similar in 
the numerator, but only the variance of X occurs in the denominator here. That reflects two facts 
about the regression coefficient: (1) It is asymmetric, and (2) it is expressed in units change in  
Y per unit change in X.

When we calculate b using this formula, we get

= =b
58.10 / 8
43.111

.168

And the intercept is

= − ⋅ = −a 5.41 (.168) 46.89 2.47

So the prediction equation here is

= − +Y X2.47 .168

Note the intercept is negative. How can this be? In this case, easily. This happens because the value 
X = 0 is far beyond the observed boundaries for values of X. In other words, a is a “meaningless” 
number in this case. However, it is necessary for the correct prediction of Y values.

The earlier scatterplot for mobility and divorce is reproduced in Figure 1.3, with the addition of 
a fitted regression line. In this case, the extension of the fitted line back to the Y axis results in 
the intercept as a negative number. This is not a real value of Y, but it is the correct baseline for 
predicting values of Y occurring in its actual range.

1.3.2.2 Interpretation of b
The interpretation of b follows from the definition of the first derivative, noting that in this 
application the smallest possible change in X is 1 unit of X. Two rules of derivatives are used here: 
One that states the derivative of a constant is zero, and the other that states that the derivative of 
a constant times a variable equals the constant:

=
+

= + = + =
dy
dx

d a bX
dX

d a
dX

d bX
dX

b b
( ) ( ) ( )

0i

i i

i

i

FIGURE 1.3    THE FITTED REGRESSION LINE
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Chapter 1  ■  A Review of Correlation and Regression    13

That is, b is the amount of change in Y for a one unit change in X—always! Parenthetically, the 
derivative can be used to figure out the effect of X in nonlinear and non-additive equations as well 
because it has a general interpretation that applies to all regression equations.

1.3.3 Unstandardized versus Standardized Coefficients

The coefficient in the preceding equation is an unstandardized (aka metric) regression coefficient; 
this means it is expressed in terms of the raw units of the X and Y variables. You can also express 
this coefficient in standardized terms—that is, where you equalize the units of the two variables 
by expressing the effect of X on Y in terms of the standard deviations of each variable.

Standardizing b involves a simple transformation:

β = ⋅b
s
s

x

y

 where β is the standardized regression coefficient.

Note what this involves when worked out by substituting for b:

β = ⋅ =
⋅

s
s

s
s

s
s s

xy

x

x

y

xy

x y
2

, which is in fact the same as rxy, the correlation.

The equivalence between r and β  holds only in the bivariate case.

1.3.3.1 Interpretation of ß
β = the number of standard deviation unit changes in Y due to a one standard deviation (SD) 
unit increase in X.

To see how this works in words, suppose

b = .92, 	 sx = 2,	 sy = 3.

Then, A 1 SD unit change in X = 2 raw units of X.
Since b =.92, we know that a 1 raw unit increase in X leads to a .92 raw unit increase in Y.
Therefore, a 1 SD—that is, 2 unit change in X, leads to a 2 × .92 = 1.84 raw unit increase in Y.
Also, a 1 SD unit change in Y = 3 raw units of Y.
So, in terms of SD units of Y, the 1 SD change in X leads to a 1.84/3 = .61 SD change in Y.

ß = r = .61 in this example. In words, a 1 standard deviation increase in X will increase Y  by  
about .6 standard deviations.

1.4 PARTITIONING OF VARIANCE IN  
BIVARIATE REGRESSION
The regression model conceptualizes the explanation of individual Y values as partial, allowing 
for true indeterminacy. The baseline for comparison in evaluating a regression is no explanation 
at all, sometimes referred to as the “null model.” In this case, our “best guess” about each person’s 
Y score is the mean of Y, since that would minimize the error overall.

Partitioning of variance refers to the division of the overall variance on Y into two parts:  
(a) explained by X (the regression) and (b) error. The regression line in Figure 1.4 helps concep-
tualize how this partitioning works.
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14    Generalizing the Regression Model

The total variability of individual Y values around the mean of Y can be expressed as

∑ −Y Y( )i
2

 the total sum of squares.

This total sum of squares can be partitioned into two components:

(1) The sum of squared deviations of predicted Y values Y( )  around the mean (Y ), telling us 
how much the regression line helps in accounting for individual Y values:

∑ −Y Y( )2  the sum of squares regression

and (2) the sum of squared deviations of actual Y values around the regression line, telling us the 
degree to which the regression line is not predicting individual Y values:

∑ − Y Y( )i
2  the sum of squares error.

So

	 ∑ − = ∑ − + ∑ − Y Y Y Y Y Y( ) ( ) ( )i i
2 2 2 � (1)

	 SS total = SS error + SS regression.

Using the proof in the box on the next page, this equation can be shown to be equal to this:

	 β∑ − = ∑ − + ⋅ ∑ −Y Y Y Y Y Y( ) ( ) ( )i i i
2 2 2 2 � (2) 

Divide by ∑ −Y Y( )i
2  to show this result as proportions adding to 1, where 1 is the total variance:

β∑ −
∑ −

=
∑ −
∑ −

+ ⋅
∑ −
∑ −

Y Y
Y Y

Y Y
Y Y

Y Y
Y Y

( )
( )

( )
( )

( )
( )

i

i

i

i

i

i

2

2

2

2
2

2

2

β=
∑ −
∑ −

+
Y Y

Y Y
1

( )
( )

i

i

2

2
2

FIGURE 1.4    PARTITIONING OF THE TOTAL VARIANCE IN Y
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Chapter 1  ■  A Review of Correlation and Regression    15

1.5 BIVARIATE REGRESSION EXAMPLE
We can run a bivariate regression example using PROC REG in SAS, a general procedure for 
running bivariate and multiple regressions. This program also allows you to estimate descriptive 
statistics and correlations as well as test specific hypotheses about the variables in the model.

In this example, we consider the impact of education on job income, separately for each parent in 
the Toronto Study of Intact Families. This is a study of 888 husband–wife families in Toronto, with 
at least one child aged 9 to 16.These are two separate bivariate regressions, but later, we specify the 
issue differently, by using the concept of an interaction, which would allow us to directly estimate 
the differential impact of education on income by gender of the parent in the same model.

Proof

Looking at the last term in equation (1), we can show that:  

∑ − = ∑ −Y Y b X X( ) ( )i
2 2 2

= − +Y Y bX bX( )i i  (substituting for a)

 − = − +Y Y bX bXi i

− = −Y Y b X X( )i i

∑ − = ∑ −Y Y b X X( ) ( )i
2 2 2

Substituting the result into (1): 

∑ − = ∑ − + ∑ −Y Y Y Y b X X( ) ( ) ( )i i i
2 2 2 2

Substituting for b2 using: β=b
s
s

y

x

: 

∑(Yi−Y )2 =∑(Yi−Y!)2+ b 2 s y
2

sx
2

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟
∑(Xi−X )2

Substituting for the variance of X and Y, and inverting the divisor:

β

∑ − = ∑ − +

⋅
∑ −

−
⋅ −
∑ −

⋅ ∑ −

Y Y Y Y

Y Y
N

N
X X

X X

( ) ( )

( )
1

1
( )

( )

i i

i

i
i

2 2

2
2

2
2

Canceling results in equation (2): 

Y Y Y Y Y Y( ) ( ) ( )i i i
2 2 2 2β∑ − = ∑ − + ⋅ ∑ −

In words: 

1 = proportion of total variance due to error + proportion of variance due to regression.

This shows that β 2, which is also R 2 , is the proportion of explained variance, which is also

β = ∑ −
∑ −

Y Y
Y Y
( )
( )i

2
2

2

This implies that β−1 2 is the proportion of error variance.
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16    Generalizing the Regression Model

Analysis of Variance

Source DF
Sum of 

Squares
Mean 

Square
F Value Pr > F

Model 1 30592 30592 93.31 <.0001
Error 605 198348 327.84744
Corrected Total 606 228939

Parameter Estimates

Variable Label DF
Parameter  
Estimate

Standard  
Error

t Value Pr > |t|
Standardized 

Estimate

Intercept Intercept 1 -3.44034 3.86237 -0.89 0.3734 0
momeduc mother᾽s education in years 1 2.53687 0.26262 9.66 <.0001 0.36555

Correlation

Variable Label momeduc mjobinc

momeduc mother᾽s education in years 1.0000 0.3655
mjobinc mother᾽s job income 0.3655 1.0000

Root MSE 18.10656 R-Square 0.1336
Dependent Mean 33.18758 Adj R-Sq 0.1322
Coeff Var 54.55823

TABLE 1.4    BIVARIATE REGRESSION OUTPUT IN SAS

Descriptive Statistics

Variable Sum Mean Uncorrected SS Variance
Standard  
Deviation

Label

Intercept 607.00000 1.00000 607.00000 0 0 Intercept
momeduc 8764.00000 14.43822 131290 7.84395 2.80071 mother᾽s education in years
mjobinc 20145 33.18758 897499 377.78793 19.43677 mother᾽s job income

Number of Observations Read 888
Number of Observations Used 607
Number of Observations with Missing Values 281

The first results are for the mother. In Table 1.4, we show all of the requested output from 
PROC REG in SAS, because the different elements of the output are common to many 
regression programs.

1.5.0.1 Observations Used in the Analysis 
At the top of the output, you can see that 607 of the 888 observations are used in the analysis. 
This is because of missing values, most of which occur for job income because some mothers 
don’t work outside of the home.

1.5.0.2 Descriptive Statistics 
The descriptive statistics show that the mean level of education in this sample of mothers is 14.44 
years, and the average income is $33,187.58. The value shown is income in thousands because that is 
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Chapter 1  ■  A Review of Correlation and Regression    17

the way the variable was coded. So to get to dollars, you multiple the value by 1000. This is a pretty low 
level of income, but there is likely to be a significant sub-sample of part-time workers here.

1.5.0.3 Correlation 
Note the correlation between the variables in the analysis is .3655—moderately high, as one 
would expect.

1.5.0.4 Partitioning of Variance 
The “Analysis of Variance” table that partitions the variance shows the sum of squares regression 
(explained by the model), the sum of squares error, and the “corrected” total sum of squares. This 
sum is corrected for the 1 degree of freedom due to the one independent variable in the model. 
If you divide the model by the total sum of squares, you get

= =
SS
SS

30592
228939

.1336model

total

Note that this is the R2 of the model, printed below in the next table in the output. This means 
that mother’s education explains about 13% of the total variance in mother’s job incomes in this 
sample. Considering this is only one variable, this is not a small amount.

1.5.0.5 Regression Results 
The results of the bivariate regression equation are shown in the Parameter Estimates table. The 
intercept is -3.44, and the regression coefficient b is 2.537. This coefficient can be interpreted 
this way: Each year of education increases job income by $2,537 on average among these women.

The prediction equation would look like this:

= − + ⋅Mjobinc Momeduc3.44 2.537  

Notice here that the intercept value is again negative. This is caused by the fact that there are 
no real zero values for mother’s education in this sample. In fact, the lowest year of education 
reported is six years. As a result, when the line is extended back to 0, it goes into the negative on 
the Y axis.

The Parameter Estimates table also shows the standardized estimate for the effect of mother’s 
education on her job income. This coefficient is .3655. As discussed above, it should be exactly 
the same as the correlation in the bivariate case. The interpretation is that a 1 standard deviation 
increase in mother’s education, which we see from the results is 2.8 years, increases job income 
by .3655 standard deviations. Given that the standard deviation in mother’s job income is about 
19.44, we could also say that a 2.8-year increase in mother’s education leads to, on average, an 
increase in job income of .3655 x 19.44 = 7.1053, or just over seven thousand dollars.

The same model was run among the husbands, to compare the impact of education on job 
income among the husbands. The output is shown in Table 1.5.

Number of Observations Read 888
Number of Observations Used 750
Number of Observations with Missing Values 138

TABLE 1.5    BIVARIATE RESULTS FOR THE HUSBANDS

(Continued)
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18    Generalizing the Regression Model

Descriptive Statistics

Variable Sum Mean
Uncorrected 

SS
Variance

Standard  
Deviation

Label

Intercept 750.00000 1.00000 750.00000 0 0 Intercept
dadeduc 11402 15.20267 188058 19.64913 4.43273 father᾽s education in years
fjobinc 45217 60.28979 4769362 2727.92760 52.22957 father᾽s job income

Correlation

Variable Label dadeduc fjobinc

dadeduc father᾽s education in years 1.0000 0.1796
fjobinc father᾽s job income 0.1796 1.0000

Analysis of Variance

Source DF
Sum of 

Squares
Mean 

Square
F Value Pr > F

Model 1 65876 65876 24.92 <.0001
Error 748 1977342 2643.50542
Corrected Total 749 2043218

Parameter Estimates

Variable Label DF
Parameter  
Estimate

Standard  
Error

t Value Pr > |t|
Standardized 

Estimate

Intercept Intercept 1 28.12580 6.71109 4.19 <.0001 0
dadeduc father᾽s education in years 1 2.11568 0.42382 4.99 <.0001 0.17956

Root MSE 51.41503 R-Square 0.0322
Dependent Mean 60.28979 Adj R-Sq 0.0309
Coeff Var 85.27983

There are some notable differences in these results. The impact of education among the hus-
bands on their income appears to be smaller, not larger, as you might expect. The b is 2.1157, 
compared to the 2.537 among the wives. This means that for every year of education the 
husbands’ income increases on average by $2,116. Even though this is smaller, it is also mis-
leading. Notice the differences in the average incomes of husbands and wives here. The hus-
band’s average income is $60,289, almost twice the income of the wives. Because of the fact 
that the husbands are starting at a higher level on average or have been working longer in the 
labor force, the impact of their education does not “need” to be as high. If you already have 
an advantage, the meritocratic impact of education may be—ironically—weaker. Following 
from this, note also that the R2 and the correlation are also both much lower.

Of course, this example raises many questions, and there are many possibilities to consider in inter-
preting this relationship. That is why we use multiple regression: both to control for, that is, take into 
account, alternative explanations of the difference here and to study the role of mediating variables 
(intervening variables between education and income), which help to explain the effect of education.

TABLE 1.5    (Continued)
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Chapter 1  ■  A Review of Correlation and Regression    19

1.5.1 Bivariate Regression Example in STATA

In Table 1.6, we present comparable results in STATA for our first regression model, predicting 
mother’s job income from her years of education. The following model uses the reg procedure in 
STATA (note: all commands in STATA must be stated in lower case).

The first part of the output presents the Analysis of Variance table. Next to this is an overview of 
the model fit. Again, we see an R2 statistic of .1322, duplicating the result in SAS.

The latter part of the output presents the relevant unstandardized coefficient (b, in the 
column labeled “Coef ”), followed by its associated standard error (2.63). Dividing these 
two numbers, we get the t-statistic (9.66) and its noted significance (P > |t|, .000). The beta 
option in STATA produces the standardized regression coefficient. Note that one key dif-
ference in the STATA regression output relative to SAS is the placement and labeling of the 
y-intercept. You will find this value in the last row of the regression output (“_cons”) rather 
than the first.

1.6 ASSUMPTIONS OF THE REGRESSION MODEL
There are a number of assumptions involved in the regression model, although some of them 
are not the final word on what is possible—because modifications of the model often solve the 
problem. We state the main assumptions here: A few of these are crucial:

•	 No autocorrelation of errors: =cov e e( ) 0i j

Y observations are independent of each other—that is, they do not have common 
systematic components. In other words, this means that different errors are 
uncorrelated. This assumption is sometimes violated when the same observations are 
followed through time or when sampling is clustered. Usually, however, observations 
are sampled independently.

•	 Homoscedasticity: σ= =Var e X E e( / ) ( )i i
2 2

In words, the variance of the errors is the same at all levels of X and does not depend on 
the level on X. When this assumption is violated, modifications of the regression can be 
used to address the problem, resulting in weighted least squares.

TABLE 1.6    BIVARIATE REGRESSION OUTPUT IN STATA

Number of obs  =    607
F(  1, 606)    =   93.31
Prob > F      =  0.0000
R-squared     =  0.1336
Adj R-squared =  0.1322
Root MSE      = 18.1066

Source SS df MS

Model 30592 1 30592
Residual 198348 605 327.847443

Total 228939 606 377.787129

mjobinc Coef. Std. Err. t P>|t| Beta

momeduc 2.53687 .26262 9.66 0.000 .3655542

_ cons -3.44034 3.86237 -.89 0.373 .

------------------------------------------------------

------------------------------------------------------

-------------------------------------------------------------------------------------------

-------------------------------------------------------------------------------------------

-------------------------------------------------------------------------------------------

---------------
-----------
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20    Generalizing the Regression Model

•	 Independence of independent variables and errors: = =E Xe cov Xe( ) ( ) 0i i

Independent variables are uncorrelated with factors in the “true” error term. If this 
assumption is violated, the regression model is basically misspecified. This assumption 
amounts to saying either that all relevant explanatory variables for Y are included in the 
model so that what is left involves only random factors or that the excluded factors are 
uncorrelated with X.

•	 Linearity

The relationship between X and Y is linear in the population. This assumption can be 
modified because there are many transformations of nonlinear relations which can be 
“fit” into a linear model.

•	 No measurement error in X

The independent variable is measured without error. There are consequences when 
there is significant measurement error, but the consequences to estimates are minimal 
when measurement error is minimal to modest.

•	 Normality of errors

This is a very important assumption because it is so often misunderstood. The 
assumption of the model is that the errors are normally distributed around the 
regression line. The assumption is not that Y is normal. This assumption is not 
necessary for unbiased estimation of b; it is necessary for correct application of 
significance tests. However, the central limit theorem applies, so that even when Y is 
skewed, suggesting errors may be skewed, an N of 100 or more will often result in a 
sufficiently normal sampling distribution for testing.

1.7 MULTIPLE REGRESSION
What happens when there is more than one independent variable in a regression? What does 
it mean to “control for” other variables or “partition” their effects or “hold constant” other 
variables? These are widely used synonymous terms, but one rarely sees a detailed discussion 
of what exactly is going on when these terms are invoked in an analysis. In general, the inten-
tion in considering more than one variable is to derive an estimate of the effect of each variable 
that is purged of any confounding (overlap) with the effects of all other correlated independent 
variables. How is this done?

Excluding the individual subscripts for variables to simplify, the general form of the multiple 
regression equation is

= + + +X a b X b X ei3 31 1 32 2

Note the changes in the notation used here: The dependent variable does not have to be Y, it can 
be anything. Here X3 is the dependent variable. It is helpful to distinguish the variables by using 
differently numbered subscripts, but you could use anything to stand for the variables: letters, acro-
nyms, and variable names are all acceptable. Because there are now multiple independent variables, 
the regression coefficients also have to be distinguished. It is customary to order the subscripts for the 
coefficients with the dependent variable number first, then the independent variable number second.
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Chapter 1  ■  A Review of Correlation and Regression    21

In standardized form, where the intercept is by definition zero, the equation would look like this, 
using small x’s to stand for the standardized variables.

β β= + +x x x ei3 31 1 32 2

The problem in multiple regression is that X1 and X2 are usually correlated—that is, confounded. 
Therefore, the usual way of estimating b in the bivariate case would include a portion of the effect 
of the other independent variable. To get a better estimate of the effect of each X, the influence 
of the other variable must be removed.

1.7.1 Covariance Equations

The regression equation above can be used to derive covariance equations, which in turn can be 
used to actually solve for the coefficients, as well as form the basis of interpretation of results in 
causal models (in Chapter 6).

To develop covariance equations to solve the coefficients, first replace a by solving for it. This is 
done using a multiple regression extension of the formula for the intercept developed in the last 
section on bivariate regression:

= − −a X b X b X3 31 1 32 2

Then we have

= − − + + +X X b X b X b X b X e( )3 3 31 1 32 2 31 1 32 2

Rearranging and factoring out the coefficients leads to an equation where the variables are 
expressed in deviation form:

− = − − + + +

− = − + − +

X X b X b X b X b X e

X X b X X b X X e( ) ( )
3 3 31 1 32 2 31 1 32 2

3 3 31 1 1 32 2 2

Now multiply each side of this equation by each independent variable in deviation form in turn:

− − = − − + − − + −X X X X b X X X X b X X X X X X e( )( ) ( )( ) ( )( ) ( )1 1 3 3 31 1 1 1 1 32 1 1 2 2 1 1

− − = − − + − − + −X X X X b X X X X b X X X X X X e( )( ) ( )( ) ( )( ) ( )2 2 3 3 31 1 1 2 2 32 2 2 2 2 2 2

Then sum and divide both sides of both equations by N - 1:

∑
− −

−
= ∑

− −
−

+ ∑
− −

−
+ ∑

−
−

X X X X
N

b
X X X X

N
b

X X X X
N

X X e
N

( )( )
1

( )( )
1

( )( )
1

( )
1

1 1 3 3
31

1 1 1 1
32

1 1 2 2 1 1

∑
− −

−
= ∑

− −
−

+ ∑
− −

−
+ ∑

−
−

X X X X
N

b
X X X X

N
b

X X X X
N

X X e
N

( )( )
1

( )( )
1

( )( )
1

( )
1

2 2 3 3
31

1 1 2 2
32

2 2 2 2 2 2

What do we have? Note the form of the term on the left-hand side of the equality—it is the formula 
for the covariance between each independent variable and the dependent variable. The covariance 
between the two independent variables also occurs on the right, as well as the variances of  
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22    Generalizing the Regression Model

X1 and X2 , resulting from terms where the deviation score on an independent variable is multiplied 
by itself, and therefore squared.

Given that Xs do not covary with e by assumption, this produces the following covariance 
equations, using more efficient notation with “s” for the covariances and variances:

= ⋅ + ⋅

= ⋅ + ⋅

s b s b s

s b s b s
X

X

13 31
2

32 12

23 31 12 32
2

1

2

Note that this is two equations in two unknowns. This means we could use these equations to 
solve for the two coefficients.

If you look at the covariance equations, you can see the difference between bivariate and multiple 
regression.

The bivariate coefficient for X1  is

=b
s
sX

31
13
2

1

 

Using the first covariance equation and solving for b31 , the effect of X1  in the multiple  
regression is now

= ⋅ + ⋅

− ⋅ = ⋅

s b s b s

s b s b s
X

X

13 31
2

32 12

13 32 12 31
2

1

1

	
=

−
b

s b s
sX

31
13 32 12

2
1  

In effect, the covariance between X1 and X3 needs to have the portion removed that is due to the 
covariance between the two independent variables X1 and X2 and the fact that X2 also has an effect 
on the dependent variable. This amount is b s32 12 , which is the covariance between X1 and X2 
times the effect of X2 on X3.

To provide an example, we have the following variables from the National Survey of Families and 
Households (NSFH), a widely used national longitudinal study of households in the United States, 
with three waves. Here we focus on a sample of married people at Wave 2 followed through to Wave 3:

X3 = depression score at Wave 3 of the NSFH (Dep3 below).

X1 = a dummy variable for getting a divorce between Waves 2 and 3. A dummy variable (explained 
later) is just a 1/0 variable comparing two groups. Here it equals 1 if the person got divorced and 
0 if they stayed married (Div23 below).

X2 = depression score at Wave 2 of the NSFH (Dep2 below).

We rewrite the regression equation specifically to show the variables involved:

= + + +Dep a b Div b Dep e3 23 23 31 1 32 2

The subscript here gives the variable a number for reference in what follows. You could use 
any statistical software to derive the covariances and variances of these variables. Here we 
used PROC CORR in SAS to get the covariances, and PROC UNIVARIATE to get basic 
descriptive statistics, including the standard deviation. The results of doing this are shown 
in Table 1.7.
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Chapter 1  ■  A Review of Correlation and Regression    23

TABLE 1.7    BASIC DESCRIPTIVE STATISTICS FOR THE DIVORCE MODEL

Covariances Standard Deviations Means

=s .08513 =s .0991 =X .011

=s .09612 =s 15.432 =X 13.232

=s 102.5723 =s 15.193 =X 13.063

We ran a bivariate regression of depression at Wave 3 on getting a divorce between Waves 2 and 3,  
to establish a baseline. That value was

=b
s
sX

31
13
2

1

= 8.67

However, in the multiple regression controlling for prior depression at Wave 2, the effect of 
Dep2 (X2) on Dep3 (X3) and its overlap (covariance) with Div23 (X1) is removed first—that is, 
it is “controlled.” This is important because the effect of Dep2 on Dep3 represents the continu-
ity in depression across waves—that is, the lack of change. Thus, in this equation, the effect 
of Div23 is the effect of divorce on change in depression across waves. Also, note, previous 
depression could lead to a higher risk of divorce, so the causal direction could be wrong unless 
it is controlled here.

Here the effect of X1 on X3 is: =
−

b
s b s

sX
31

13 32 12
2

1

The amount to be removed from the effect of Div23 is shown in the graphic in Figure 1.5 in 
paths with grey arrows, and the net effect of Div23 after removing the overlap with Dep2 is the 
Black arrow.

FIGURE 1.5    A MODEL FOR A TWO VARIABLE MULTIPLE REGRESSION

S12 
b32 

b31
Div 23

Dep2

Dep3

1.7.1.1 Solving the Equation
Using the given information about the variances and covariances, it is possible to solve for each 
unknown, because we then have two covariance equations in two unknowns. For example, we 
can solve for b31 (though we do not show the derivation of this formula):

=
⋅ − ⋅

−
b

s s s s
s s s

X

X X
31

13
2

12 23
2 2

12
2

2

1 2

=b 4.8331
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24    Generalizing the Regression Model

Substituting this value in the covariance equation for s23  leads to

=b .43232

Solving for a,

= − − = − ⋅ − ⋅ =a X b X b X 13.06 (4.83 .01) (.432 13.23) 7.233 31 1 32 2

The overall prediction equation is

= + +Dep Div Dep3 7.23 4.83 23 .432 23 1 2

Here we use the concept of “symptom days” to interpret results. That’s because the depression 
questions asked how many days a week each symptom occurred. Because there are 12 symptoms, 
there are potentially 7 x 12 = 84 symptom days a week that could occur.

1.7.1.2 The Equation Interpreted

1.	 A divorce between Waves 2 and 3 leads to 4.83 more depression symptom days per 
week at Wave 3, over and above depression at Wave 2.

2.	 Each symptom day of depression at Wave 2 leads to .432 symptoms days of depression 
at Wave 3.

3.	 Note, importantly, that the effect of divorce is 4.83 / 8.67 = 56%, just over half, of its 
original size. This reflects the confounding and suggests that prior depression is also 
related to the risk of divorce over time.

You can calculate exactly how much the effect of divorce has been reduced by the presence of 
prior depression in the equation, as follows:

−
= − =

b b
b

8.67 4.83
8.67

.441 2

1

That is, controlling for prior depression explains about 44% of the original association.

The results of the regression from the SAS output are shown in Table. 1.8.

TABLE 1.8    RESULTS FOR THE MULTIPLE REGRESSION

Number of Observations Read 4600
Number of Observations Used 4247
Number of Observations with Missing Values 353

Analysis of Variance

Source DF
Sum of 

Squares
Mean 

Square
F Value Pr > F

Model 2 189842 94921 518.58 <.0001
Error 4244 776819 183.03924
Corrected Total 4246 966660
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Chapter 1  ■  A Review of Correlation and Regression    25

You can see in the final table the regression coefficients under “Parameter Estimates.” Note there 
is also a t test for each coefficient and a significance level. This significance level is “two-tailed,” 
so if you hypothesize a direction to the effect, as for divorce, the probability here could be “one-
tailed,” which means you divide the printed probability by two (.0187/2 = .0094).

1.7.2 Tests for Multiple Regression

There are three basic tests used in multiple regression:

•	 Significance of the whole equation: The alternative hypothesis is that at least one of 
the independent variables has a significant effect on the dependent variable, against the 
null hypothesis that no independent variable has a significant effect.

)(=
− − −

F
R k

R N k
/

1 / ( 1)

2

2
 with k and (N - k - 1) df

Where k = number of independent variables in the equation and N = sample size.

•• Individual variables in the equation: Tests of individual variables in the equation 
amount to a 1 degree of freedom test of the difference in the R2 with the variable in the 
model versus the R 2 when the variable is not in the model.

The null hypothesis is that X has no effect on Y.

=
−

− − −
−F

R R
R N k

( ) /1
(1 ) / ( 1)

k k

k

2
( 1)
2

2
 with 1 and (N - k - 1) df

Where Rk
2  = the R 2 with all variables in the equation.

−R k( 1)
2  = the R 2 with the variable to be tested removed from the equation.

This test is equivalent to the test for b printed by most programs.

•	 Group of variables added to an equation: This test compares the R2 in a model with 
variables added to a baseline model to the R 2 of the baseline model, to test collectively 
for the significance of the effect of the group of variables added.

This test is a comparison of nested models, in which Model A (the smaller model) is nested in Model 
B (the larger model), and thus all variables in A are contained in B, but B has additional variables.

Root MSE 13.52920 R-Square 0.1964
Dependent Mean 12.97078 Adj R-Sq 0.1960
Coeff Var 104.30520

Parameter Estimates

Variable DF
Parameter  
Estimate

Standard  
Error

t Value Pr > |t|

Intercept 1 7.22571 0.27373 26.40 <.0001
div23 1 4.83030 2.05421 2.35 0.0187
dep2 1 0.43160 0.01353 31.91 <.0001
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26    Generalizing the Regression Model

The null hypothesis is that none of the new variables added has a significant effect on Y.

=
− −

− − −
− − −F

R R k k
R N k

k k N k
( ) / ( )
(1 ) / ( 1)

with and 1 dfB A B A

B B
B B

2 2

2 A

Where RB
2  = the R 2 from the larger model (B),

RA
2  = the R 2 from the smaller model (A),

and kB and kA are the number of independent variables in B and A respectively.

1.7.3 Nested Models

One model (A) is nested in another more complex model (B) when A occurs completely as a subset of B, 
and B has additional variables. You could, for example, add a group of variables to the depression equa-
tion to test a single idea or hypothesis. One version of this occurs when you want to study differences 
across groups. Another occurs when you want to test interactions (discussed in the next chapter).

Suppose you are concerned that the effect of divorce in the previous example is confounded with 
ethno-racial differences in rates of divorce, and these group differences represent basic differences 
in status that are reflected in differences in depression. If we added groups to this equation repre-
senting race/ethnicity, we could control for this possibility as an alternative explanation.

The equations being compared here are

Model 1: = + + +Dep a b Div b Dep e3 23 2 i3 31 1 32 2

Model 2:	 = + + + + + +Dep a b Div b Dep b Black b Hispanic b Asian e3 23 2 i3 31 1 32 2 33 34 35

Note that Model 1 is contained in Model 2 and thus is “nested” in Model 2. We can therefore 
compare the R2 across these models. Here we added three groups—Black, Hispanic, and Asian—
from the NSFH data to the equation for the effect of divorce, with the reference comparison 
group non-Hispanic Whites. Each group variable is coded 1 versus 0, and the reference group is 
the group left out of this coding. This makes that group the baseline for comparison. The relevant 
output is reproduced in Table 1.9.

TABLE 1.9    ADDING GROUP DIFFERENCES TO THE MULTIPLE REGRESSION

Analysis of Variance

Source DF
Sum of 

Squares
Mean 

Square
F Value Pr > F

Model 5 196220 39244 216.02 <.0001
Error 4241 770440 181.66465
Corrected Total 4246 966660

Root MSE 13.47830 R-Square 0.2030
Dependent Mean 12.97078 Adj R-Sq 0.2020
Coeff Var 103.91281
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Chapter 1  ■  A Review of Correlation and Regression    27

We can see in these results that the effect of divorce is still significant and therefore independent 
of group differences. The net effect of divorce here (4.67) is very close to the prior model, suggest-
ing that ethno-racial differences in divorce do not account for the effect of divorce in this model.

If we want to test for the effect of “race/ethnicity” here, we would need to compare the R 2 from 
this model to the previous model for divorce and prior depression only. This comparison isolates 
the effect of “race/ethnicity” and asks whether the independent partialled effect of race/ethnicity 
is significant over and above divorce and prior depression.

Substituting the values from the output into the F-test,

= − −
− − −

=F
(.2030 .1964) / (5 2)

(1 .2030) / (4247 5 1)
11.71

with 3 and 4241 df. Any F table will verify that this is significant beyond the .0001 level. Race/
ethnicity does make a difference here, but its effect is independent of the relevance of divorce.

1.8 A MULTIPLE REGRESSION EXAMPLE: THE 
GENDER PAY GAP
When you hear about the gender pay gap, it is often stated in bivariate terms: It is the overall dif-
ference between the average (or median) pay of men and women in the labor force. For example, 
you may have heard that women make something like 76 cents on the male dollar earned.

The question is how much of that pay gap is due to “natural” or expected differences in pay due 
to other causes. These other causes include factors that are generally rewarded with higher pay—
such as education, experience, and performance—or are due to differences in economic sectors, 
occupations, or regional economies that have an imbalance of men and women. The concept of 
“equal pay for equal work” is not as easy to specify as it sounds.

This is admittedly a tricky question and thus also a good example. The entire issue is subtler than 
it appears, if women choose occupations that provide more “flex time,” for example, which gen-
erally have lower pay, but feel constrained to choose those occupations. This possibility suggests 
larger causes of unequal pay are at work, limiting the sense of choice and access women have.

As an example of interpreting multiple regression, we present results from the National Sur-
vey of Families and Households, using data from Wave 2 in 1992 to1994. We would expect 

Parameter Estimates

Variable DF
Parameter  
Estimate

Standard  
Error

t Value Pr > |t|

Intercept 1 6.79018 0.28282 24.01 <.0001
div23 1 4.67567 2.04693 2.28 0.0224
dep2 1 0.42115 0.01360 30.98 <.0001
black 1 3.38370 0.60390 5.60 <.0001
hispanic 1 2.48630 1.12877 2.20 0.0277
asian 1 2.83244 2.81983 1.00 0.3152
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28    Generalizing the Regression Model

a substantial pay difference to exist at that point in history. To keep things as straightforward 
as possible, we make some simplifying assumptions, relative to the large number of alternative 
debates surrounding this issue.

Our dependent variable here is the wages earned per hour of work reported. This is one preva-
lent approach in this literature because it already takes into account gender differences in hours 
worked overall.

The standard approach to this issue adjusts—controls—for differences in human capital, cap-
tured by level of education and total years worked in the labor force. There may also be other 
confounders, if, for example, women are overrepresented in groups that are also at a pay disad-
vantage, but the cause is not gender per se. This happens in our example in the case of race: 19% 
of our employed females are Black, but only 14% of the employed males are Black.

Here is the result of a bivariate regression of wages per hour worked on gender, coded here as a 
two-category variable, with 1 = female, and 0 = male (see Table 1.10). This coding allows us to 
see the average difference in dollar income per hour directly.

TABLE 1.10    BIVARIATE MODEL FOR GENDER PAY GAP

Parameter Estimates

Variable DF
Parameter  
Estimate

Standard  
Error

t Value Pr > |t|

Intercept 1 15.67842 0.36708 42.71 <.0001
female 1 -4.15118 0.49088 -8.46 <.0001

This result says that women make on average $4.15 less than men per hour worked. The results are 
not stated proportionally. Because of the way “female” is coded, we know that men make on average 
$15.68 dollars per hour worked. This is because the intercept is the value of Y when independent 
variables = 0. We can make the result proportional by expressing the difference in income this way:

= − =female - to - male income ratio
15.678 4.1511

15.678
.73

This says that in this equation, women make about 73 cents per dollar earned by a man. Given 
the year is around 1992 to 1994, this figure—broadly—makes sense.

This result does not control for qualifications, tenure (experience), and performance. The last is 
difficult to capture in most data, but the first two are represented by level of education and expe-
rience in the labor force. When you control for education and the total number of years worked 
in the labor force, this produces the results shown in Table 1.11.

TABLE 1.11   � THE GENDER PAY GAP CONTROLLING FOR EDUCATION  
 AND SENIORITY

Parameter Estimates

Variable DF
Parameter  
Estimate

Standard  
Error

t Value Pr > |t|

Intercept 1 -9.28590 1.42357 -6.52 <.0001
female 1 -2.84527 0.48218 -5.90 <.0001
education2 1 1.50659 0.09479 15.89 <.0001
Totalworkyearswgt 1 0.26889 0.02406 11.18 <.0001
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Chapter 1  ■  A Review of Correlation and Regression    29

Here we see that each variable affects income controlling for the others. Each year of education 
(education2) increases average hourly income by about $1.51 per hour. The effect of labor force 
experience is captured by the variable “totalworkyearswgt.” This variable is the total number of 
accumulated work years, weighted by whether the job was full-time or part-time. Here each 
weighted work year increases hourly income by about $.27, or 27 cents. In both cases, results for 
human capital predictors are very significant and reflect the usually observed influence of these 
standard predictors of pay.

You can also see here that the net effect of “female” is now -2.8453—that is, the net difference with 
men is now $2.85 per hour less than men. This net difference with males is considerably smaller. 
You cannot figure out the net female to male income ratio here, however, because now the intercept 
has a different interpretation. It is in fact still the predicted value of Y when all independent variables 
= 0, but now those variables include education and total years worked. This means the intercept is 
the predicted hourly income for men with zero years of education and zero years worked—in other 
words, it is not interpretable as is. The intercept is negative, mainly due to the fact that no one in 
the actual sample has zero years of education and reports zero years worked.

You can adjust for this problem and make the intercept interpretable again, by “centering” the 
control variables here. That means subtracting the male mean from each raw score, like a devia-
tion score. We subtract the male mean, assuming we want to interpret the male / female difference 
as if female workers had the same level of education and time in the labor force as male workers.

Male (female = 0) and female (female = 1) means on the control variables are shown in Table 1.12.

One thing that is very clear from this table is that women work significantly fewer years than 
men, despite the fact that we observe in other results that they are slightly older than the men in 
this sample. This is presumably due to more time in home work and childcare roles. However, it 
is also much less clear that there are any differences in level of education by gender.

When the education and total years worked are centered on the male mean, you get the results 
show in Table 1.13.

TABLE 1.13   � RE-CENTERING THE VARIABLES FOR COMPARISON TO THE  
BIVARIATE DIFFERENCE

Parameter Estimates

Variable DF
Parameter  
Estimate

Standard  
Error

t Value Pr > |t|

Intercept 1 15.67842 0.35447 44.23 <.0001
female 1 -2.84527 0.48218 -5.90 <.0001
educcenter 1 1.50659 0.09479 15.89 <.0001
totalyearscenter 1 0.26889 0.02406 11.18 <.0001

TABLE 1.12    MALE VERSUS FEMALE MEANS ON CONTROL VARIABLES

female N Obs Variable N Mean Std Dev Minimum Maximum

0 2118 education2 2118 13.5193579 2.6023414 0 20.0000000
Totalworkyearswgt 2118 17.0931500 10.3754841 0.0833333 53.1666667

1 2687 education2 2687 13.2690733 2.4021010 0 20.0000000
Totalworkyearswgt 2687 13.6387855 9.3584510 0.0833333 48.2500000
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30    Generalizing the Regression Model

Note here that the intercept is essentially equal to the original intercept, and the coefficients for 
each variable are exactly the same—as expected. Using this result, we will compare net differences 
between women and men relative to that overall male mean income. Now the adjusted female 
to male ratio is

= − =female - to - male income ratio
15.678 2.8453

15.678
.82

You can see that the net difference is smaller. Now women make 82 cents per dollar earned by 
men, net of other factors representing human capital differences.

Finally, we add race to this example, because we know that women are overrepresented among 
Blacks, and race is a distinct source of income discrimination. In other words, we do not want to 
attribute a pay difference to gender, when it is in fact due to race.

We added two variables to the equation representing race: “Black” is a comparison of Blacks] 
to non-Hispanic Whites (1 vs. 0), and Hispanic is a comparison of Hispanics to non-Hispanic 
Whites (also 1 vs. 0).

When we add these variables to the regression, using the centering approach, we get the results 
shown in Table 1.14.

The net difference between women and men is now –$2.78 dollars per hour of work. Computing 
this as a ratio of female to male income, 

income ratio
15.678 2.7818

15.678
.82= − =female - to - male

The ratio is about the same: Even though Blacks receive a lower per hour income compared to 
Whites and there is a slight difference in proportion female among Blacks versus Whites, it does 
not further account for the gender pay ratio.

A caveat: There are other, more comprehensive controls we could use here, discussed widely in 
this literature. And of course, historical change would suggest we use more recent data as well. 
But the principle of accounting for the female to male difference has been demonstrated in this 
example, even considering this restricted set of other factors determining pay.

There is an important complication to consider in this example that will be discussed thoroughly in 
Chapter 6. The issue is whether standard human capital differences are really controls here, as opposed 
to mediators that transmit the effect of gender to pay differences—in other words, actual consequences 
of gender that are part of the overall gender difference in pay, not an alternative explanation.

TABLE 1.14   � CONTROLLING FOR RACE DIFFERENCES

Parameter Estimates

Variable DF
Parameter  
Estimate

Standard  
Error

t Value Pr > |t|

Intercept 1 15.67842 0.35439 44.24 <.0001
female 1 -2.78185 0.48313 -5.76 <.0001
educcenter 1 1.47579 0.09691 15.23 <.0001
totalyearscenter 1 0.27117 0.02409 11.26 <.0001
blackcenter 1 -1.30546 0.64290 -2.03 0.0424
hispcenter 1 -0.67357 0.99173 -0.68 0.4971
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Chapter 1  ■  A Review of Correlation and Regression    31

The last model can be duplicated using the reg command in STATA. Again, we present results 
just to create a cross-walk between SAS and STATA, this time with a multiple regression 
example (Table 1.15).

1.9 DUMMY VARIABLES
The variables in the examples in the previous section are not all “continuous” variables that vary 
from zero to the highest value in a sample. In those examples, divorce is a “dummy variable,” 
equal to 1 if there was a divorce, and equal to 0 if not. “Female” is also a dummy variable, = 1 for 
females, and 0 for males. This kind of variable (aka an indicator variable) just stands for whether 
you are in a certain group or not, whether you experienced an event or not, or whether you are 
in a certain category or not. It is straightforward to interpret results because there are only two 
groups involved—divorced versus not divorced, women versus men.

A trickier case occurs when you want to assess the differences among a set of groups, considered as 
a set of independent variables. In this case, you have to use a set of dummy variables to represent 
differences among groups. This happens for variables like marital status, race, ethnicity, religion, 
region, and so forth. This too came up in the previous section when we added race to the model 
to demonstrate nested models.

There are certain rules in interpreting these variables that you need to be aware of. For one thing, 
there is a left-out reference group that is the comparison point. For example, to study marital 
status, you may have five groups in total: married, divorced or separated, widowed, never mar-
ried, and cohabiting. You choose a reference group for comparison, usually a standard norm, and 
compare other groups to this group. In this case, you could make married the reference group.

1.9.1 How Do Dummy Variables Work in Regression?

Interpreting b is always the same in general: The amount of change in Y resulting from a 1-unit 
change in X. For dummy variables, that one unit represents two groups, and as a result, because 

TABLE 1.15    REGRESSION RESULTS FOR THE GENDER WAGE GAP IN STATA

Source SS df MS

Model 114657.249 5 22931.4499

Residual 1276521.15 4799 265.997322

Total 1391178.4 4804 289.58751

Number of obs  =     4805 
F( 5,  4799)    =     86.21

Prob > F       =     0.0000

R-squared      = 0.0824

Adj R-squared  = 0.0815

Root MSE       = 16.309

wagesperhr Coef. Std. Err. t P>|t| [95% Conf. Interval]

female -2.78185 .4831318 -5.76 0.000 -3.72901 -1.83469

educcenter 1.475792 .0969146 15.23 0.000 1.285795 1.665789

totalyearscenter .2711658 .0240869 11.26 0.000 .2239445 .3183871

blackcenter -1.305463 .6429024 -2.03 0.042 -2.565847 -.0450801

hispcenter -.6735712 .991734 -0.68 0.497 -2.617824 1.270682

_ cons 15.67842 .3543853 44.24 0.000 14.98366 16.37317

-------------------------------------------------------

-------------------------------------------------------

-------------------------------------------------------------------------------------------

-------------------------------------------------------------------------------------------

-------------------------------------------------------------------------------------------

---------------

-----------------------
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32    Generalizing the Regression Model

of the “Least Squares Criterion” discussed in the earlier section, the b for a dummy variable is also 
the mean difference between the two groups on Y.

In this context, a, as usual, is the predicted value of Y when X = 0. Thus it is the mean of Y for 
the group coded 0 on the dummy variable.

1.9.1.1 Example 1: Gender—Two Categories
Imagine you are studying gender differences in starting salaries at universities at the assistant 
professor level. The graph in Figure 1.6 shows the difference as a regression slope comparing 
males (= 1) to females (= 0), based on imagined data circa 2010.

FIGURE 1.6   � DIFFERENCES IN STARTING SALARY OF MALE VERSUS FEMALE  
ASSISTANT PROFESSORS

Female = 0 Male = 1 
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Given that there are two values of X, the regression line will pass exactly through the mean values 
on Y within each of the two groups (the conditional Y means).

So 	 b = the difference between the means in the two groups.

	 a = the intercept, the mean of Y in the group coded = 0.

The equation:			   Ŷ
  
= 77 + 9X

Interpreted: 
When X = 0 (women):		  Ŷ

 
 = 77 + 9(0) = 77

When X = 1 (men):		  Ŷ
 
 = 77 + 9(1) = 86

The regression coefficient, b = 9, expresses the difference between the mean incomes in the two 
groups. So, the mean income for women is $77,000, and the mean income for men is $86,000.

1.9.1.2 Example 2: Divorce
In the previous section, we considered the effect of divorce on depression. Divorce is a dummy vari-
able with two groups, coded in the previous example to be = 1 for divorced and = 0 if still married.

The output from this regression is shown in Table 1.16.
From these results, we could write out the equation as

Dep3! = 12.97 + 8.57 ◊  Div23
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Chapter 1  ■  A Review of Correlation and Regression    33

This means that those not divorced had a mean level of depression at Wave 3 of 12.97 on this scale and 
that the divorced had an average level 8.57 points higher than that—12.97 + 8.57 = 21.54. We note 
the estimate here is slightly different than the by-hand calculation, which is subject to rounding error.

1.9.2 Dummy Variables with Multiple Categories

Many categorical variables have more than two categories: ethnicity, marital status, religion, region, 
employment status, family type, to name just a few examples.

In Table 1.17, assume there are four measured marital statuses. Note in this scheme that you will see 
variables for divorced or separated, widowed, and never married but not for married. Each variables 
is coded = 1 to stand for that group and 0 for all other groups. The only group with 0 on all three 
dummy variables is the married. Each dummy variable can be interpreted as the mean difference 
on Y of that group versus the reference group, in this case, the married. You cannot create a separate 
dummy variable for the married because they are already uniquely defined in this coding: 

TABLE 1.16   � THE BIVARIATE EFFECT OF DIVORCE ON DEPRESSION

Parameter Estimates

Variable DF
Parameter  
Estimate

Standard  
Error

t Value Pr > |t|

Intercept 1 12.97808 0.22504 57.67 <.0001
div23 1 8.56935 2.24820 3.81 <.0001

Analysis of Variance

Source DF
Sum of 

Squares
Mean 

Square
F Value Pr > F

Model 1 3344.10531 3344.10531 14.53 0.0001
Error 4589 1056268 230.17386
Corrected Total 4590 1059612

Root MSE 15.17148 R-Square 0.0032
Dependent Mean 13.06394 Adj R-Sq 0.0029
Coeff Var 116.13247

TABLE 1.17   � CREATING DUMMY VARIABLES FOR THE GROUPS WITH MARRIED  
 AS THE REFERENCE

Groups

Variable Names

Divsep Widow Nevermarr

Divorced / Separated 1 0 0

Widowed 0 1 0

Never Married 0 0 1

Married 0 0 0
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34    Generalizing the Regression Model

If you try to create a separate dummy variable for all four groups here, you end up with one vari-
able that is perfectly determined by the scores on three others and thus is perfectly “collinear,” a 
term referring to the fact that the last dummy variable considered is completely determined by 
the values of the other three and thus is not separable from the other three.

Imagine you did create separate dummy variables for each marital status, as illustrated in Table 1.18.

In this table, Married = 1 – Divsep – Widow – Nevermarr.

You can do the calculation as follows:

For the divorced/separated,	 Married = 1 - 1 - 0 - 0 = 0
For the widowed,		  Married = 1 - 0 - 1 - 0 = 0
For the never married,		  Married = 1 - 0 - 0 - 1 = 0
For the married,		  Married = 1 - 0 - 0 - 0 = 1

In other words, the values on the married dummy variable are already defined by the combined 
information on the first three dummy variables. Basically, you don’t need the fourth dummy vari-
able here.

The reference group you choose is always left out of the group of dummy variables constructed. 
This means that each dummy variable will be the mean difference on Y between the group 
defined by that dummy variable and the reference group. If you want to know about mean dif-
ferences among those groups, you can still extract that information from the regression results, 
since the difference in the coefficients of any two variables is equal to the difference in the means 
in those groups.

The ultimate lesson is this: You only need k - 1 variables to represent differences among k groups. 
You must choose a reference group, often a standard reference representing an extreme or what 
is expected, and then create dummy variables showing the differences between the other groups 
and this reference group.

1.9.3 Interpreting Results for Dummy Variables with 
Multiple Categories

This example uses the National Survey of Families and Households (NSFH) Wave 2 data to 
assess marital status differences in “close and trusting relations,” a general scale derived from 
the Ryff Well-Being scales (Ryff, 1989). This scale is constructed as a 6-point scale, from 0 to 5, 
where 0 represents no trusting or close relations and 5 would represent strong agreement that you 
have close and trusting relationships with others.

TABLE 1.18   � CREATING DUMMY VARIABLES FOR ALL GROUPS

Groups

Variable Names

Divsep Widow Nevermarr Married

Divorced / Separated 1 0 0 0

Widowed 0 1 0 0

Never Married 0 0 1 0

Married 0 0 0 1
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Marital status at Wave 2 also considered whether the respondent was cohabiting. For all nonmarried 
statuses, this trumped divorce, widowhood, or never married status. Thus, everyone in the dummy 
variables for divorce / separation, widowhood, and never married is not living with a partner.

The results are shown in Table 1.19.

Looking at the results for the dummy variables here, you should first see that the intercept value 
of 3.79 is the mean on Y among the married, the reference group. You can also see that the 
divorced, widowed, and never married all experience lower levels of trusting relationships com-
pared to the married (p < .0001), but cohabitors are not significantly different from the married 
on this outcome. The basic dividing line in the results is having a live-in partner.

You can derive the means in these groups straightforwardly, by calculating each mean as a + bk. 
For the divorced, for example, the mean is 3.79 + (−.500) = 3.29.

What you don’t know from these results is whether the groups differ from each other. This is 
useful information in interpreting the results, in order to get a sense of an overall pattern and the 
essential differences among groups.

You can in fact run regression programs in SAS or STATA with specific options or additional 
statements to test the differences among the groups in the equation. The test you set up is a 
difference of means between two groups. You need to see first what the mean of each group is 
made up of and then create a test of a null hypothesis of no difference across groups.

For example, the mean among the divorced/separated in this equation is

a + b1

TABLE 1.19   � MARITAL STATUS DIFFERENCES IN TRUSTING RELATIONSHIPS

Analysis of Variance

Source DF
Sum of 

Squares
Mean 

Square
F Value Pr > F

Model 4 179.01967 44.75492 34.62 <.0001
Error 4237 5477.06122 1.29267
Corrected Total 4241 5656.08089

Number of Observations Read 4600
Number of Observations Used 4242
Number of Observations with Missing Values 358

Parameter Estimates

Variable DF
Parameter  
Estimate

Standard  
Error

t Value Pr > |t|

Intercept 1 3.79430 0.02179 174.10 <.0001
divsep2 1 -0.50006 0.04591 -10.89 <.0001
widow2 1 -0.26325 0.06239 -4.22 <.0001
nevermar2 1 -0.37252 0.07140 -5.22 <.0001
cohab2 1 0.08167 0.09772 0.84 0.4033

Root MSE 1.13696 R-Square 0.0317
Dependent Mean 3.64785 Adj R-Sq 0.0307
Coeff Var 31.16793
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36    Generalizing the Regression Model

The mean among the widowed in this equation is

a + b2

So the hypothesis of no difference between these groups is

Ho: (a + b1) − (a + b2) = 0

When you perform the subtraction above, the intercepts cancel, resulting in

Ho: b1 − b2 = 0

So you can set up a difference of means test for pairs of groups by just subtracting the two coef-
ficients. This is possible because each is a difference from the same baseline. An example of how 
that works is this: If the mean in the reference group is 10, the mean in Group 1 is 15, and the 
mean in Group 2 is 12, then the difference between Group 1 and the reference is 5, and the dif-
ference between Group 2 and the reference is 2. So the difference between has to be 15 – 12 = 
5 – 2 = 3. Results for F-tests of mean differences for all six pairs of groups here are shown in Table 
1.20, using SAS output. This output names the test using a short-form of the comparison—for 
example, “divvwid” is divorced versus widowed.

TABLE 1.20   � POST-HOC TESTS FOR DIFFERENCES AMONG GROUPS

Test divvwid Results for Dependent Variable closetrust2

Source DF Mean Square F Value Pr > F

Numerator 1 14.51279 11.23 0.0008
Denominator 4237 1.29267

1.

Test divvnmar Results for Dependent Variable closetrust2

Source DF Mean Square F Value Pr > F

Numerator 1 3.50184 2.71 0.0999
Denominator 4237 1.29267

2.

Test divvcoh Results for Dependent Variable closetrust2

Source DF Mean Square F Value Pr > F

Numerator 1 31.76358 1.50 0.2214
Denominator 4237 1.29267

3.

Test widvnmar Results for Dependent Variable closetrust2

Source DF Mean Square F Value Pr > F

Numerator 1 1.93369 1.50 0.2214
Denominator 4237 1.29267

4.
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Chapter 1  ■  A Review of Correlation and Regression    37

The first test shows that the divorced (-.50) are significantly lower on trusting relationships 
compared to the widowed (-.26). However, they are not significantly different from the never 
married (Test 2). As would be expected given the nonsignificant difference between cohabitors 
and the married, the divorced are also lower in trusting relations compared to cohabitors (Test 3).  
The widowed are not different from the never married (Test 4, note that the never married are 
between the divorced and the widowed in trusting relations) and also lower than cohabitors 
(Test 5), as are the never married (Test 6).

The picture that emerges is this: Groups that have no live-in partner express lower levels of trust-
ing relationships in their life. But there is a further distinction among those without a partner, 
specifically when previous relationships have ended naturally or “successfully,” as in the death of 
a spouse, relative to those who have been divorced. This puts the widowed in-between the other 
nonmarried groups and the partnered groups.

1.9.4 One-Way Analysis of Variance

The one-way analysis of variance refers to a simple test for any group differences in the equation. 
This is equivalent to the test in multiple regression for “any” effect of at least one independent 
variable.

The test is the significance of the R 2 in the equation: if the R 2 is significant, this could only occur 
because there are significant differences among the groups somewhere in the equation.

The F-test is structured as follows:

=
− − −

F
R k

R N k
/

(1 ) / 1

2

2

testing the null hypothesis for k groups in the equation

H0: b1 =…= bk  = 0

against an alternative that at least one group differs from one other

HA: b1 ≠…≠ bk  ≠ 0

Test widvcoh Results for Dependent Variable closetrust2

Source DF Mean Square F Value Pr > F

Numerator 1 11.03322 8.54 0.0035
Denominator 4237 1.29267

5.

Test nmarvcoh Results for Dependent Variable closetrust2

Source DF Mean Square F Value Pr > F

Numerator 1 15.76829 12.20 0.0005
Denominator 4237 1.29267

6.
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38    Generalizing the Regression Model

This test is printed in the earlier regression output in the “Analysis of Variance” table. Here the  
F value is 34.62, with 4 degrees of freedom, significant at the .0001 level. Thus the one-way 
analysis of variance overall test suggests there are group differences here.

In fact, this test should be conducted first before you conduct any tests comparing specific pairs 
of groups. We do not take the time or space here to review the problem of cumulative Type I 
error, mainly because this is a large topic, also more suited to experimental data. However, we 
do advocate only comparing groups as suggested by specific hypotheses you are testing, instead 
of all groups.

Concluding Words

This chapter travels a considerable distance in relatively 
few pages. Consistent with the idea that this book is 
more for second courses, this chapter is intended as 
a review, a tune-up, more than an initial introduction. 
However, we did include important detail at a number of 
points, which will be useful as reference points for the 
material in the chapters ahead.

Our discussion started with a formal definition of an 
association between variables using probability theory. 
This was illustrated first using a cross-tabulation of two 
categorical variables. We introduced the correlation 
as a measure of association, in steps, to demonstrate 
the structure of a measure of association for more 
continuous variables.

The regression model was introduced in steps as well, 
starting with the structure of the bivariate regression 
model and adding to that model for the rest of the 
chapter. There are a number of important introductory 
concepts here: The Least Squares Criterion for where 
to fit the line through a scatter of points, unstandardized 
versus standardized coefficients, and the partitioning of 
variance. All of these concepts will be invoked as we move 
forward.

Multiple regression was introduced, initially, as a way 
of accounting for confounding—overlap—between 
different independent variables. In this demonstration, 
we see what it means to “control for,” or “ account for,” or 
“adjust for,” confounding among variables. Our example 
using the gender pay gap illustrates a very important 
feature of control variables that will come up in later 
chapters: For a control variable to be relevant, it must be 

related to both the focal independent variable (gender) 
and the outcome (pay). Usually we are trying to test 
the focal association at issue, so the most threatening 
control variables are also those whose patterns 
of association are consistent with the overall focal 
association. For example, women had fewer total years 
of work, and fewer years was related to lower pay. As a 
result, total years working partially accounted for the 
bivariate gender difference.

Finally, we introduced dummy variables as a special kind 
of variable in regression, designed to handle variables 
that designate membership in different groups.

At this point, all we have is the standard linear ordinary 
least squares regression model. The structure of it 
is additive—meaning that different variables push or 
pull Y up or down, but independently—and it is linear—
meaning that independent variables have the same 
effect across all levels—and it is restricted to outcomes 
that are quasi- to completely continuous. All of these 
assumptions will be modified in the chapters ahead. As 
we will eventually see, the regression model is quite 
flexible, allowing a broader range of representation of 
the predominant ideas and styles of thinking in the social 
sciences than is possible using only the additive, linear 
model.

Generalizations of Regression: A Graphical  
Road Map

Here is a graphical overview of the variations of the 
basic multiple regression model we will consider in the 
chapters ahead.
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Chapter 1  ■  A Review of Correlation and Regression    39

The linear additive model . . . the starting point

	

Y = a + b1X1 + b2X2 + e

Continuous
Normal

AdditiveLinear

Including conditional multiplicative effects . . . interactions

	

Y = a + b1X1 + b2X2 + b3(X1 · X2) + e
Not

Additive

Including nonlinearity . . . multiple forms possible

	

Y = a + b1X1 + b2X2 + b3X 2
1
 + e

Y = a + b1X1 + b2 ln(X2) + e

Not Linear

Including categorical outcomes . . . logistic

	

ln odds Y = a + b1X1 + b2X2 + e

Categorical: 1 / 0

Where Odds =
1 – Pr(Y = 1)

Pr(Y = 1)

Including nonnormal outcomes and errors (Poisson)

	

ln Y = a + b1X1 + b2 X2 + e

Nonnormal

Practice Questions

1.	 Bivariate Regression and Correlation

The output below from SAS shows the descriptive 
statistics and covariance for two variables from the 
2015 Canadian General Social Survey (Statistics 
Canada, 2017):

•	 overallhealth is an index of overall physical and 
mental health, varying from 0 to 30.

•	 hhincome is the household’s income in 
thousands of dollars.

		  Table 1.A shows the means and standard 
deviations of each variable.
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40    Generalizing the Regression Model

Simple Statistics

Variable N Mean Std Dev Sum Minimum Maximum Label

overallhealth 22832 15.58368 2.94471 355807 0 30.00000 Overall health: 
Index of health, 
mental health, and 
well-being

hhincome 22832 72.91137 46.10670 1664713 0 150.00000 Household income

Table 1.A Means and Standard Deviations

Table 1.B shows the variances and covariance of the 
two variables. The variances are in the diagonal (the 
cells in Row 1, Column 1, and Row 2, Column 2), and the 
covariance is the off-diagonal. Notice that the covari-
ance is the same in Cells 1,2 and 2,1, as it should be.

Table 1.B Variances and Covariance

Covariance Matrix, DF = 22831

overallhealth hhincome

overallhealth 8.671341 24.800833
hhincome 24.800833 2125.827490

a.	 Using the information in these tables, calculate the 
bivariate regression equation showing the effect of 
household income (the independent variable) on overall 
health (the dependent variable), including the intercept 
a and the bivariate regression coefficient b.

b.	 Transform the unstandardized b you have 
calculated to a standardized β .

2.	 Dummy Variables

Results of a dummy variable regression in SAS are 
shown in Table 1.C. The results show differences in 
pride in Canada by household living arrangements 
(from the definition provided in Q5): "(canadaproud), 
a scale of pride in Canada that varies from 20 to 
100. The living arrangements variable classified 
people into five categories, and these were used 
to develop dummy variables for four of these 
categories. The reference group is living alone.

There are four dummy variables in the regression:

•	 livespouse:	 = �1 if living with spouse only;  
0 otherwise

•	 livenuclearfam:	 = �1 if living with spouse and 
children; 0 otherwise

•	 liveparent:	 = �1 if living with parents;  
0 otherwise

•	 liveother:	 = �1 if other arrangement;  
0 otherwise

Table 1.C Regression Results in SAS

Analysis of Variance

Source DF
Sum of 

Squares
Mean Square F Value Pr > F

Model 4 44832 11208 71.87 <.0001
Error 27402 4273432 155.95330
Corrected Total 27406 4318264

Root MSE 12.48813 R-Square 0.0104
Dependent Mean 76.24155 Adj R-Sq 0.0102
Coeff Var 16.37969
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Parameter Estimates

Variable Label DF
Parameter  
Estimate

Standard  
Error

t Value Pr > |t|

Intercept Intercept 1 74.87337 0.15609 479.68 <.0001
livespouse Live with Spouse Only 1 0.48689 0.21190 2.30 0.0216
livenuclearfam Live with Spouse and Children 1 2.15710 0.20704 10.42 <.0001
liveparent Live with one or two parents 1 3.78327 0.25753 14.69 <.0001
liveother Live with others 1 1.22804 0.38425 3.20 0.0014

a.	 What is the result of the one-way analysis of 
variance test for any differences among these 
groups? (No calculations necessary; available 
in output).

b.	 What is the mean level of pride in Canada of 
people who live with a spouse and children?

c.	 Calculate the mean difference in pride in 
Canada between people who live with a 
spouse and children and people who live with 
a spouse only.

3.	 Multiple Regression with Dummy Variables

This is output from a regression of depression at Wave 
2 of the National Survey of Families and Households 
(NSFH) on four variables: education, age, a sex dummy 
variable, and welfare status in childhood, also a dummy, 
standing for whether the respondent’s parents were on 
welfare when they were growing up.

Table 1.D Regression of Depression on Education, 
Age, Sex, and Welfare Status in Childhood

Number of Observations Read 4600
Number of Observations Used 4252
Number of Observations with Missing Values 348

Analysis of Variance

Source DF
Sum of 

Squares
Mean Square F Value Pr > F

Model 4 61418 15354 68.55 <.0001
Error 4247 951342 224.00330
Corrected Total 4251 1012760

Parameter Estimates

Variable DF
Parameter  
Estimate

Standard  
Error

t Value Pr > |t|

Intercept   1 28.73657 1.72143 16.69 <.0001
education2 1 -0.91151 0.08780 -10.38 <.0001
age2 1 -0.12839 0.01951 -6.58 <.0001
female 1 3.92017 0.48401 8.10 <.0001
welfare 1  4.35591 0.82259 5.30 <.0001

Root MSE 14.96674 R-Square 0.0606
Dependent Mean 13.22474 Adj R-Sq 0.0598
Coeff Var 113.17232
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42    Generalizing the Regression Model

The effect of every variable here is significant. 
Answer these questions:

a.	 What is the total difference in depression 
between a female who grew up in a family on 
welfare versus a male who did not?

b.	 What is the difference between a male who 
grew up on welfare and a female who did not?

c.	 Work out the difference between a person with 
12 years of education who is 40 years old and 
someone with 16 years of education who is 60 
years old.

4.	 Multiple Regression—with Dummy Variables

The multiple regression results below are from 
the National Longitudinal Survey of Youth in the 
United States. The dependent variable here is level 
of education, measured in years. In this sample, it 
varies from 0 to 20 years. The N (sample size) in this 
regression is 4,737.

The independent variables in the output below are

•	 	momed: The respondent’s mother’s education, 
in years.

•	 stablepov100: A dummy variable = 1 if the 
person lived in a household in adolescence 
consistently below the poverty line; 0 otherwise.

•	 	unstablepov100: A dummy variable = 1 if the 
person lived in a household in adolescence that 
was sometimes below, sometimes above the 
poverty line; 0 otherwise.

•	 earlyMHcv: This is an index of emotional and 
behavioral problems in early  adolescence. It 
varies from 0 problems to 15 problems.

•	 asvab: This is the person’s percentile rank on 
a national achievement test given in early high 
school. Here it is measured in 10% increases, so 
it varies from 0 to 10. The mean is 4.5, reflecting 
the 45th percentile on this test.

•	 female: A dummy variable = 1 if female and = 0 
if male.

•	 Black: A dummy variable = 1 if the respondent 
identifies as African American and = 0 otherwise.

•	 Hispanic: A dummy variable = 1 if the 
respondent identifies as Hispanic and = 0 
otherwise.

The reference group for the poverty dummy variables 
is “no poverty,” and the reference group for the two 
race dummy variables is “non-Hispanic White.”

Results are shown in the following table from SAS: 
Two models are shown: The second model adds the 
effects of poverty background to the first model (i.e., 
stablepov100 and unstablepov100).

Table 1.E Without Poverty

Root MSE 2.10799 R-Square 0.3401
Dependent Mean 12.93878 Adj R-Sq 0.3393
Coeff Var 16.29201

Parameter Estimates

Variable DF
Parameter  
Estimate

Standard  
Error

t Value Pr > |t|

Intercept 1 9.60066 0.14919 64.35 <.0001
momed 1 0.07750 0.00934 8.29 <.0001
earlyMHcv 1 -0.04787 0.01253 -3.82 0.0001
asvab 1 0.46205 0.01201 38.49 <.0001
female 1 0.58104 0.06245 9.30 <.0001
black 1 0.14741 0.08077 1.83 0.0681
Hispanic 1 -0.03119 0.08933 -0.35 0.7270
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Parameter Estimates

Variable DF
Parameter  
Estimate

Standard  
Error

t Value Pr > |t|

Intercept 1 9.84612 0.15212 64.73 <.0001
momed 1 0.07136 0.00936 7.62 <.0001
stablepov100 1 -2.04608 0.41475 -4.93 <.0001
unstablepov100 1 -0.60992 0.08387 -7.27 <.0001
earlyMHcv 1 -0.04560 0.01244 -3.66 0.0003
asvab 1 0.44264 0.01214 36.47 <.0001
female 1 0.59656 0.06203 9.62 <.0001
black 1 0.22988 0.08082 2.84 0.0045
Hispanic 1 0.03816 0.08905 0.43 0.6683

a.	 Write out the F-test you would use to test  
the overall effect of childhood poverty in Model 
2. Plug the relevant values into this formula,  
and do the calculation. Is the effect of poverty 
significant?

b.	 Using Model 2, what is the mean level of 
education among White males who did not grow 
up in poverty, had no mental health problems 
in adolescence, had a mother who graduated 
high school (12 years), and scored at the 50th 
percentile on the Asvab test (asvab = 5)?

c.	 Using Model 2 again, what is the predicted 
difference in education between Black females 
and White males? Note, you only need to state 
the difference, not the actual levels of each, so 
you can ignore other variables not involved in 
this comparison.

5.	 Multiple Regression

The multiple regression results in Table 1.G are 
from the Canadian General Social Survey in 2015 

(Statistics Canada, 2017), restricted to the provinces 
of Quebec and Ontario.

The dependent variable here is pride in Canada 
(canadaproud), a scale of pride in Canada that varies  
from 20 to 100.

The independent variables in the output are

•	 educyrs: Education in years
•	 female: A dummy variable = 1 for female and 0 

for male
•	 provqc: A dummy variable = 1 if the respondent 

lived in Quebec and = 0 if Ontario
•	 employed:	A dummy variable = 1 if working now 

and = 0 otherwise
•	 fedvote: A dummy variable = 1 if the person voted in 

the last federal election and = 0 if they did not vote
•	 freqnews: Frequency of following the news in 

the last week, in days

•	 nrcivilgroups: Number of civil participation 
groups the respondent belongs to

Table 1.F With Poverty

Root MSE 2.09231 R-Square 0.3501
Dependent Mean 12.93878 Adj R-Sq 0.3490
Coeff Var 16.17086
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44    Generalizing the Regression Model

Parameter Estimates

Variable Label DF
Parameter  
Estimate

Standard  
Error

t Value Pr > |t|

Intercept Intercept 1 80.86589 0.66115 122.31 <.0001
educyrs Years of Education of 

Respondent 1 -0.13912 0.04740 -2.93 0.0033
female Female =1, Male=0 1 -0.80933 0.22926 -3.53 0.0004
provqc Province of residence: 

Quebec 1 -10.21617 0.23884 -42.77 <.0001
employed Employed last week? 1 -0.57010 0.24150 -2.36 0.0183
fedvote Voted in last federal 

election? 1 -0.52063 0.26723 -1.95 0.0514
freqnews Frequency of following 

news and current affairs 
- Week 1 0.22482 0.04460 5.04 <.0001

nrcivilgroups Civil Society Participation 
- Number of Groups - past 
12 months 1 -0.22978 0.06828 -3.37 0.0008

TABLE 1.G    PREDICTING PRIDE IN CANADA IN A MULTIPLE REGRESSION

a.	 According to the results, does education 
increase or decrease pride in Canada or have no 
effect?

b.	 If you follow the news every day (7 days a week), 
how much would this increase pride in Canada, 
according to the results?

c.	 Given a respondent who is female, lives in 
Quebec, and does not work, what is the total 
difference in pride in Canada compared to an 
employed male living in Ontario?

d.	 According to the results, who has the greater 
pride in Canada, a working person who voted in 
the last election or a nonworking person who 
did not vote?

6.	 Multiple Regression

The multiple regression results below are from the 
Canadian Quality of Life Panel Survey conducted 
between 1977 and 1981. The variables in the output 
are following.

The dependent variable is 
LQ16:   life satisfaction (from 1 to 11)

The independent variables are 

•	 NCHILD:	 = � Number of children living in 
the household

•	 ONTARIO:	 = � 1 if from Ontario, 0 
otherwise (dummy)

•	 FEMALE:	 = � 1 if female; 0 if male 
(dummy)

•	 HLTHPROB:	 = � 1 if person reports a chronic 
health problem, 0 otherwise 
(dummy)

•	 Q158:	      �Income, measured in 
$10,000 increments

•	 EMPLOY77: 	 = � 1 if working, 0 if not 
working  (dummy)

The output is from SPSS but is essentially similar to SAS 
output:

•	 B = unstandardized coefficient (b);

•	 BETA = the standardized coefficient (β);

•	 CONSTANT = the intercept (a).

•	 SIG T = two-tailed significance of B.
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---------------------------- VARIABLES IN THE EQUATION ---------------------------

VARIABLE B SE B BETA T SIG T
NCHILD -.099524 .036070 -.078042 -2.759 .0059
ONTARIO -.277151 .100515 -.075744 -2.757 .0059
FEMALE  .113122 .105134 .031733 1.076 .2821
HLTHPROB -.379606 .111195 -.094136 -3.414  .0007
Q158 (income) .056744 .014720 .113645 3.855 .0001
EMPLOY77 .256317 .111073 .072146  2.308 .0212
(CONSTANT) 8.396110 .174691 48.063 .0000

Regression Output

a.	 Only one variable here does not have a 
significant effect on life satisfaction. What 
variable is that?

b.	 Do children in the household increase or 
decrease life satisfaction?

c.	 How much would a $20,000 increase in income 
increase life satisfaction, according to these 
results?

d.	 What is the difference in life satisfaction 
between an employed person in Quebec and an 
unemployed person in Ontario?
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