You are here

Disable VAT on Taiwan

Unfortunately, as of 1 January 2020 SAGE Ltd is no longer able to support sales of electronically supplied services to Taiwan customers that are not Taiwan VAT registered. We apologise for any inconvenience. For more information or to place a print-only order, please contact uk.customerservices@sagepub.co.uk.

Computational Modeling in Cognition
Share
Share

Computational Modeling in Cognition
Principles and Practice



November 2010 | 376 pages | SAGE Publications, Inc

An accessible introduction to the principles of computational and mathematical modeling in psychology and cognitive science

This practical and readable work provides students and researchers, who are new to cognitive modeling, with the background and core knowledge they need to interpret published reports, and develop and apply models of their own. The book is structured to help readers understand the logic of individual component techniques and their relationships to each other.


 
Preface
 
1. Introduction
1.1 Models and Theories in Science

 
1.2 Why Quantitative Modeling?

 
1.3 Quantitative Modeling in Cognition

 
1.4 The Ideas Underlying Modeling and Its Distinct Applications

 
1.5 What Can We Expect From Models?

 
1.6 Potential Problems

 
 
2. From Words to Models: Building a Toolkit
2.1 Working Memory

 
2.2 The Phonological Loop: 144 Models of Working Memory

 
2.3 Building a Simulation

 
2.4 What Can We Learn From These Simulations?

 
2.5 The Basic Toolkit

 
2.6 Models and Data: Sufficiency and Explanation

 
 
3. Basic Parameter Estimation Techniques
3.1 Fitting Models to Data: Parameter Estimation

 
3.2 Considering the Data: What Level of Analysis?

 
 
4. Maximum Likelihood Estimation
4.1 Basics of Probabilities

 
4.2 What Is a Likelihood?

 
4.3 Defining a Probability Function

 
4.4 Finding the Maximum Likelihood

 
4.5 Maximum Likelihood Estimation for Multiple Participants

 
4.6 Properties of Maximum Likelihood Estimators

 
 
5. Parameter Uncertainty and Model Comparison
5.1 Error on Maximum Likelihood Estimates

 
5.2 Introduction to Model Selection

 
5.3 The Likelihood Ratio Test

 
5.4 Information Criteria and Model Comparison

 
5.5 Conclusion

 
 
6. Not Everything That Fits Is Gold: Interpreting the Modeling
6.1 Psychological Data and The Very Bad Good Fit

 
6.2 Parameter Identifiability and Model Testability

 
6.3 Drawing Lessons and Conclusions From Modeling

 
 
7. Drawing It All Together: Two Examples
7.1 WITNESS: Simulating Eyewitness Identification

 
7.2 Exemplar Versus Boundary Models: Choosing Between Candidates

 
7.3 Conclusion

 
 
8. Modeling in a Broader Context
8.1 Bayesian Theories of Cognition

 
8.2 Neural Networks

 
8.3 Neuroscientific Modeling

 
8.4 Cognitive Architectures

 
8.5 Conclusion

 
 
References
 
Author Index
 
Subject Index
 
About the Authors

"[T]his is an excellent introduction to computational modeling. It is written at exactly the right level for its intended readership, and it covers all the essentials very well. I can only encourage anyone with an interest in cognition to work with this book."

Koen Lamberts
University of Warwick

This book covers the most essential topics for cognitive modeling.
It does so at a level that a) students can still understand, yet b) the skills/knowledge provided are actually applicable for research.
MATLAB/pseudocode is provided, which is helpful for a start.
Also, the chapters are well written.
Overall, a very good read for students and researcher who want to get into cognitive modeling.

Professor Rene Huster
Psychology Dept, University of Oslo
February 10, 2016

This book offers a great introduction and explanation of advanced statistical methods to research cognition. Along the way it also gives an excellent account of several key statistics constructs that must be understood by all behavioral and social scientists and students.

Dr Rodolfo Leyva
Sociology, Middlesex University
March 8, 2016

One of the best books on computational modelling I know!

Professor Markus Knauff
Psychology , University of Giessen
November 8, 2011
Key features

Key Features:

  • The book's practical approach shows readers how model construction, parameter estimation, and model selection are carried out in real world settings.
  • An easy-to-follow, step-by-step presentation moves from the basic concepts of modeling to modeling issues and applications.
  • The logic of models and the types of arguments that can be made from them is a primary focus.
  • Programming examples from MATLAB are used to illustrate core concepts.
  • The book comes with a complete set of programs in the "R" language which are available on the supporting website (www.cogsciwa.com).
  • A focus on readability makes mathematics and programming less daunting for beginners.
  • An author-supported website provides many sample programs mentioned in the book and other tools such as Lewandowsky et al. WMC Battery for MATLAB. Supporting programs also available in R code by September 2011 at www.cogsciwa.com.

Sage College Publishing

You can purchase or sample this product on our Sage College Publishing site:

Go To College Site

This title is also available on SAGE Knowledge, the ultimate social sciences online library. If your library doesn’t have access, ask your librarian to start a trial.